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Spatiotemporal pulse collapse on periodic potentials
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We present analytical results, based on the separation of different spatial scales and integral
relations, which describe the spatiotemporal evolution of pulses in a nonlinear medium with peri-
odically varying parameters (e.g., a nonlinear waveguide with a grating). Exact sufficient criteria
for blow-up are formulated and the dependence of the spatiotemporal pulse collapse on the grating

amplitude and period is discussed.
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As is well known, optical pulses may collapse simulta-
neously and symmetrically in time and space under the
combined effect of diffraction, dispersion, and nonlinear-
ity. Such spatiotemporal self-focusing of short but intense
optical pulses has been recently discussed in Refs. [1-3].
The effect of group-velocity dispersion (GVD) has differ-
ent influences on the pulse collapse depending on the sign
of the GVD. In the case of normal GVD (see, e.g., Ref.
[3]), a single pulse breaks up into two pulses that collapse
with simultaneous subdivision into “cavities” of smaller
scales. However, a pulse develops a singularity at a fi-
nite propagation distance only in the three-dimensional
case. This type of collapse has been analyzed earlier in
the context of wave propagation in plasmas [4], where the
term “fractal collapse” has been introduced for the pro-
cess whereby each small-scale bunch is, in turn, unstable
to split into smaller-scale structures being compressed by
collapse. In the case of anomalous GVD, spatiotempo-
ral self-focusing of a nonlinear pulse takes place without
breakup, and the pulse collapses as a whole even in the
two-dimensional problem (see, e.g., [1]).

An interesting problem is the spatiotemporal nonlin-
ear pulse dynamics in a medium with a periodically vary-
ing refractive index [5,6]. Nonlinear wave propagation in
periodic structures has been a topic of extensive studies
because it is a problem of fundamental interest and it has
many potential practical applications. Interplay between
the effects produced by dispersion and nonlinearity in the
presence of periodic modulation of the refractive index
results in a variety of interesting nonlinear phenomena,
including so-called gap solitons (see, e.g., [7-9]). Spa-
tiotemporal evolution of a pulse in a nonlinear waveguide
with a periodic refractive-index profile has been recently
studied using a variational approach and numerical sim-
ulations [5]. The variational approach is known to be
an appropriate and simple way to describe general fea-
tures of the nonlinear wave evolution. At the same time,
this is not a rigorous method, because results are rather
sensitive to the successful choice of trial functions. The
optimum solution is to combine such a variational ap-
proach with numerical calculations and exact methods
such as the virial theorem [10].

The purpose of this paper is to present exact sufficient
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criteria for spatiotemporal pulse collapse in a periodic
medium for the limits of rapidly and slowly varying (one-
dimensional) periodic modulation of the medium’s pa-
rameters. As a matter of fact, these two limit cases may
be considered as two intermediate steps of one process
when a collapsing pulse changes an effective ratio of the
pulse width to the period of the spatial modulation. In
the first case of rapid oscillations, we apply the recently
formulated asymptotic method [11] to separate fast and
slow spatial variables, and show that, to the second-order
terms, the resulting (“averaged”) equation is a renor-
malized nonlinear Schrédinger (NLS) equation for which
the collapse criterion may be found in an explicit form.
When the pulse width becomes comparable to the peri-
odic modulation, the effective averaging method cannot
be applied to calculate the collapse criterion, and we use
an approach based on a majoring function (see, e.g., Ref.
[6]). A combination of both these approaches allows us
to present sufficient criteria and to describe features of
spatiotemporal collapse in a nonlinear medium with peri-
odically varying parameters. A typical physical problem
for which our results may be applied is the spatiotempo-
ral pulse compression in a nonlinear Kerr-type waveguide
with a periodic (one-dimensional) modulation of the re-
fractive index (known as a grating).

As is well known, the spatiotemporal evolution of the
dimensionless envelope u(z,z,t) of the electromagnetic
field in a waveguide with a periodic refractive index is
governed by the following NLS equation:

2
+ 8_1_1) + |u|?u = e cos(kx)u, (1)
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where we have used normalized variables (see, e.g., Ref.
[5]) and selected the case of the anomalous GVD regime.

Equation (1) is a modification of the two-dimensional
(2D) NLS equation. The main properties of the 2D NLS
equation are rather well established (see, for example,
Ref. [12] for a review). In particular, a solution of the 2D
NLS equation may develop a singularity at a finite propa-
gation distance [10,13]. This result was proved by means
of the virial theorem [10]. The singularity occurs at a
finite distance when the pulse power exceeds a certain
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critical value. More precisely, the necessary condition for
the blow-up is that the “pulse energy” [ |u(z, t)|? dzx dt
of the input field distribution (at z = 0) must be larger
than that of the same integral calculated for the radial
stationary solution of the lowest order. As was mentioned
in [5,6], the similar features of the collapse dynamics may
be also expected in the case of a periodic modulation of
the refractive index. In this work, we analyze the effect of
the periodic grating on the collapse dynamics for rapidly
and slowly varying modulations (in comparison with the
pulse scales) of the refractive index.

In the first case we assume that the parameter k in
Eq. (1) is large and apply an averaging method recently
used to analyze different regimes of the soliton dynamics
in the presence of rapidly varying periodic perturbations
[11,14,15]. A general approach for deriving an averaged
equation to any order of asymptotic expansion has re-
cently been proposed in Ref. [11]. Here we show that
the method described in [11] may be also applied to the
case of periodic spatial perturbations, provided the per-
J
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turbation is rapidly varying, i.e., its spatial scale is much
smaller than the characteristic width of the spatially lo-
calized solution of the problem under consideration.

Let us consider the periodic potential in Eq. (1) as
rapidly oscillating, i.e., k is assumed large, and apply the
method of the scale separation. In order to derive an
effective equation for the slowly varying part of the wave
field, we look for a general solution of Eq. (1) in the form
of the following asymptotic expansion:

= U + Acos(kz) + Bsin(kz) + C cos(2kzx)

+Dsin(2kz) + - - -, (2

where the functions U and A, B, ... are assumed to be
slowly varying, and U has the sense of the mean value
of the field u on the spatial scale ~ k~1. Our goal is to
derive an effective equation for the function U. To this
end, we substitute Eq. (2) into Eq. (1) and equate the
coeflicients in front of the different harmonics obtaining
the infinite chain of coupled equations,

i%—g +1 (?912 + ‘?:U) +|UPU + (%U‘Az +UIAP + ) - %eA, (3)

ig—f %%‘;+— (Z:TA —k2A+2k%1—3) + (U?A* +2|UPA+--) =e(U+ %C+---), (4)
i28 %%zt—f - (ZZB k?B - 2kg—A) +(U*B* +20UPB +--) = ;eD, (5)

i% + %C?;Tf % (?;TC; — 4k%C + 4k%—D) + (UZC* + %U"A2 + U|A|? + 2U)*C + -- ) = %eA, (6)

and so on. One of the main steps in our analysis is to
find the appropriate form of asymptotic expansion for
the coefficients A, B,..., which will allow us to solve
the coupled equations (4)-(6). In this case, it may be
proved (see, e.g., similar discussion in Ref. [11]) that the
asymptotic expansions may be taken in the form

ai a2 bl
A ﬁ + F + , B= EE + y

C1 d1

and so on. Substituting Eq. (7) into Egs. (3)—(6) and
equating terms of the same order in k1, we find
a; = —2¢U, (8)
80,1
b, = —2% (9)
8a; 0%, 0%a 2

az = 21—87 + 12 92 + 4|U| a, (10)

and so on. Applying now the expansions (7) to Eq. (3) we

[
find that the equation for the slowly varying component

U is written as
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After using the results (8)—(10), this takes the form

U U  8*U 27
ZE (3$2 + ) + |U|
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(12)

where we have introduced the dimensionless parameter
6% = €2/k%. It is important to note that the derivation
presented above is still valid for large €’s provided k is
large enough. As a matter of fact, it may be proven that
Eq. (12) is valid for arbitrary 6 up to the order of O(1).
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Thus, it follows from Eq. (12) that the averaged dynam-
ics on the rapidly varying periodic potential is described
by a renormalized NLS equation.

As is well known (see, e.g., the review paper [12]), the
blow-up condition for the 2D NLS equation may be writ-
ten as H < 0, where H is the Hamiltonian corresponding
to the NLS equation. For Eq. (12) this yields H,., < 0,
where H,., is the Hamiltonian of the renormalized NLS
equation. This leads to the integral relation:

[ s (

where o = (k?+262%)/(k?—662) and 8 = (k2+1262)/(k%*—
662) or for §2 < k?

2 auU
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oz ot
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2
—ﬂIUI4) <0, (13)
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azl-}-SF, ﬁz1+18ﬁ. (14)
Therefore the renormalization of the NLS equation leads
to a change of the collapse criterion compared to the
primary (unrenormalized) model. This may allow us to
avoid blow-up instabilities for input pulse with parame-
ters lying in the region of the standard blow-up of the
NLS model, without taking into account other physical
mechanisms (such as saturation of the refractive index)
that prevent blow-up.

If the blow-up condition is satisfied, the pulse is com-
pressed due to collapse. Being compressed on the pe-
riodic potential, the pulse becomes so narrow that its
width reaches a value comparable to the period of the
potential. In this case, the assumption we made above is
no longer valid, and, to predict the subsequent evolution
of the pulse, we should develop another approach. The
other approach we use here does not assume a rapidly
varying potential, and the main contribution to the col-
lapse criterion appears in the first-order approximation
in the potential amplitude e.

To start the analysis, we note that, in contrast to the
2D NLS equation, Eq. (1) does not conserve the z projec-
tion of the total momentum of the system, and this makes
it impossible to apply the well-known procedure that has
been used for the proof of collapse in the 2D NLS equa-
tion [10]. That is why we use here the so-called majoring
equation method (see, e.g., [16]). In a simple way, this
method may be formulated as follows. For the partial
differential equation under consideration, one introduces
an appropriate integral characteristic of its localized solu-
tions. With the successful choice of such a quantity, one
may derive an ordinary differential equation (or, at least,
inequality) for this function. Solving this equation (or
inequality), one may find sufficient conditions for a sin-
gularity to appear. In terms of this approach, the virial
theorem [10] is, as a matter of fact, a particular case of
a parabolic majoring function.

To prove the existence of collapse in Eq. (1), we con-
sider as a majoring function the positively defined quan-
tity S = [ (22 + t2)|u|?dzdt, which has the sense of the
effective (spatiotemporal) pulse width. It is easy to show
that the evolution of this functional in z is described by
the equation
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Zz—f =8H + 4/ Jul? [2f(a:) + z%(:—)] dzdt, (15)
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where f(z) stands for the spatial function in the right-
hand side of Eq. (1), and H is the system Hamilto-
nian which is a conserved quantity. The result (15)
is rather general; we apply it to the particular case
f(z) = ecos(kz) to make a natural link to the case al-
ready analyzed above when pulses, being compressed due
to blow-up, have widths of order of the period of the po-
tential.

The right-hand side of Eq. (15) may be estimated by
means of the Holder inequality (see, e.g., Refs. [6,16]).
As a result, we may obtain the following differential in-
equality on S:

d?S oW (S

Tz S8(H +eN)+ 4ekSY/2NY/? = — as(; ),
where W(S) = AS — BS%/2, A = —8(H + ¢N), B =
(8/3)ekN'/?, and N = [ dzdt|u|? is the other conserved
quantity of Eq. (1) which has the sense of the system
energy for optical problems. The representation (16) al-
lows us to use the analogy with the motion of a particle
in the effective potential W (S) treating z as the “time”
variable. This analogy adequately describes all aspects
of the evolution of S.

First, let us consider the most important case of the
“natural” initial conditions when there is no artificial ini-
tial focusing of the wave packet, namely, (dS/dz)|.=0 =
0. It is easy to show that under the condition

(16)

H+eN <0, (17)

the potential W(S) has a single maximum at the point
Sm = (24/3B)2. Let us choose, for simplicity but with-
out loss of generality, the initial pulse satisfying the con-
dition Sy = S(0) < S,.. Such a choice provides the
condition dW(S)/dS > 0 to be satisfied, so that dS/dz
is a monotonically decreasing function. From Eq. (16) it
follows that

! (j—s) >1 (ddi) +W(So) - W(S) = B~ W(S).
(18)

The above choice of the initial data provides also the
condition E > W,,, = W(S,,) to be satisfied. Resolving
the differential inequality (18), we finally obtain

So

ds > V2
— z.
s VE-W(s)

It is clear that the “moment of time” when the parti-
cle reaches the point S = 0 corresponds to the collapse
point. In other words, if the integral in the left-hand side
of Eq. (19) converges, then the corresponding solution of
Eq. (1) develops a singularity at a finite point zo. There-
fore, at z = 0 an input pulse satisfies the two following
conditions:

(19)

24\?
H+eN<0, 50)<Sn=(3%) - (20)
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then the pulse blows-up at the point
So
2 < / (ds/vAE-W(s]) -
0

Thus we have proven that the positive function §(z) be-
comes zero at the point zo. Using this contradiction and
the additional inequality N? < SI, where the quantity
I is defined as I = [ (|uz|? + |w|?)dzdt, one may check
that the integral characteristic I becomes unbounded at
the point z¢ as well. The conditions (20) give us the suf-
ficient integral criteria of collapse in Eq. (1), and this
result is the analog of the virial theorem [10] that has
been proven for the 2D NLS equation in the absence of
the external potential.

Our results may be easily generalized to cover the case
of an arbitrary periodic potential satisfying the follow-
ing conditions: max|f(z)| < C; and max|f.(z)| < Cy,
C1,2 being constant. In the general case, the majoring
inequality for the quantity S(z) is written as [cf. Eq.

(16)]

d?s e d
EZZ—=8H+4/ |u|? [2f(w)+a:id(:—)] dz dt

—00

< 8(H + NCy) + 4SY/2N2Cy, (21)

and all the results follow directly from Egs. (17)-(20)
by the simple change ¢ — C; and ek — Cs. Thus this
approach is rather general, and it also may be applied for
a fairly large class of external periodic potentials.

At last, we would like to mention that some of the
results obtained in the present paper may be useful to
understand, at least qualitatively, the mechanism of the
collapse-induced energy localization in a discrete lattice
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(see [17-19]). Indeed, in the quasicontinuum approxima-
tion when the pulse width is much larger than the lattice
spacing, the discreteness may be treated as an effective
periodic potential to the pulse (see, e.g., [20]). As fol-
lows from the problem considered here, such a potential
changes the condition for blow-up. In fact, such “a renor-
malized blow-up dynamics” has been recently described
numerically by Bang et al. [17] for the discrete NLS equa-
tion. We would like to note that the conclusions of the
present study are in a good qualitative agreement with
those numerical results. In particular, it was shown in
[17] that discreteness makes possible the blow-up even
for subcritical power nonlinearities, and this is similar
to the renormalization we have found for rapidly vary-
ing potentials. On the other hand, when the pulse is
narrow enough the blow-up in lattices is suppressed by
discreteness, and this is similar to the change of the col-
lapse criterion we calculated with the help of the major-
ing function.

In conclusion, we have presented sufficient criteria for
blow-up in the problem of spatiotemporal collapse on pe-
riodic potentials. As we have shown, the problem may
be effectively treated in the limits of rapidly and slowly
varying periodic potentials. In the former case, we have
applied asymptotic expansions to calculate a renormal-
ization of the system Hamiltonian and modification of
the blow-up condition, and in the latter case, we have
proven an analog of the virial theorem. We have shown
that a periodic potential not only changes the sufficient
criterion for blow-up but also its effect is very essential
in the vicinity of the focusing point.
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